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We analyze the performance and scalabilty of algorithms for the solution of large optimization
problems on high-performance parallel architectures. Our case study uses the GPCG (gradient
projection, conjugate gradient) algorithm for solving bound-constrained convex quadratic problems.
Our implementation of the GPCG algorithm within the Toolkit for Advanced Optimization (TAO) is
available for a wide range of high-performance architectures and has been tested on problems with
over 2.5 million variables. We analyze the performance as a function of the number of variables, the
number of free variables, and the preconditioner. In addition, we discuss how the software design
facilitates algorithmic comparisons.
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1. INTRODUCTION

The Toolkit for Advanced Optimization (TAO) focuses on the design and im-
plementation of component-based optimization software for the solution of
large-scale optimization applications on high-performance architectures. Our
approach is motivated by the scattered support for parallel computations and
lack of reuse of linear algebra software in currently available optimization soft-
ware. Our design enables connection to lower-level support (parallel sparse
matrix data structures, preconditioners, solvers) provided in toolkits such as
PETSc [Balay et al. 1997, 2001], and thus we are able to build on top of these
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toolkits instead of having to redevelop code. The advantages in terms of devel-
opment time are significant.

A major concern in the TAO project [Benson et al. 2000] is the performance
and scalability of optimization algorithms on large problems. In this case study,
we focus on the GPCG (gradient projection, conjugate gradient) algorithm [Moré
and Toraldo 1991] for the solution of the bound-constrained quadratic program-
ming problem

min{q(x) : l ≤ x ≤ u}, (1)

where q : Rn 7→ R is a strictly convex quadratic function, and the vectors l and
u define bounds on the variables. Although GPCG had been originally designed
for large-scale problems, implementation of GPCG on a parallel architecture
presented significant obstacles that are typical of a large class of optimization
algorithms. The most significant obstacle arises from the method used to com-
pute the step between iterates. Specifically, in modern active set methods for
solving (1), the step between iterates is usually defined via the approximate
solution of a linear system of the form

Akwk = −rk ,

where the matrix Ak and the vector rk are, respectively, the reduced Hessian
matrix and the reduced gradient of q with respect to the free variables. In a
parallel environment, the efficient implementation of the conjugate gradient
method requires that Ak be evenly distributed over the processors, but since
the set of free variables can change drastically between iterates, the reduced
matrix is unlikely to be well distributed. Hence, a redistribution of the rows of
Ak over the processors may be necessary at each iteration.

This observation implies that the scalability of the GPCG algorithm is lim-
ited not only by the efficiency of the redistribution algorithm but also by the
sizes of the matrices Ak . If the set of free variables is large, then performance
is likely to improve because the communication overhead is relatively small,
while performance is likely to suffer when there are few free variables. The
performance and scalability of the GPCG algorithm also depend on the pre-
conditioner used by the CG algorithm. While the goal of preconditioning is to
reduce both the number of floating point operations and the overall computing
time for solving a problem, it is possible that the solution time may increase for
certain preconditioners.

In this article, we study the performance and scalability of the GPCG algo-
rithm as a function of the number of variables, the number of free variables,
and the preconditioner. These issues are relevant to general optimization algo-
rithms and to the development of scalable optimization algorithms, and thus
the GPCG algorithm is a prime candidate for a case study in the performance
and scalability of optimization algorithms in parallel architectures.

Our implementation of GPCG uses object-oriented techniques to leverage the
parallel computing and linear algebra infrastructure offered by PETSc [Balay
et al. 1997, 2001], which relies on the Message-Passing Interface (MPI) [Gropp
et al. 1994] standard for all interprocessor communication. As a result, our im-
plementation runs on a wide variety of high-performance architectures. Biros
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and Ghattas [1999a, 1999b] have been using a similar approach for the so-
lution of PDE-constrained optimization problems. They have also been con-
cerned with efficiency and scalability issues, but for quadratic problems with
linear equality constraints. As we have pointed out, inequality constrained op-
timization problems give rise to different performance issues. Hohmann [1994],
Deng et al. [1994], Meza [1994], Bruhwiler et al. [1998], and Gockenbach et al.
[1999] have employed object-oriented design for nonlinear optimization, but
their work does not address the reuse of linear algebra toolkits and is restricted
to uniprocessor environments. Our use of object-oriented techniques and lin-
ear algebra toolkits also distinguishes our implementation of GPCG from the
data-parallel implementation of McKenna et al. [1995]. In particular, they can
rely only on diagonal preconditioners, while our approach allows a wide range
of preconditioners.

Sections 2 and 3 are dedicated to background material on the bound-
constrained optimization problem (1) and to a brief overview of the GPCG
algorithm, while Section 4 has a discussion of our design philosophy and its
benefits in developing robust and scalable solutions strategies.

The performance results in Section 5 are noteworthy in several ways. First,
the number of faces visited by GPCG is remarkably small. Other strategies can
lead to a large number of gradient projection iterates, but the GPCG algorithm
is remarkably efficient. Another interesting aspect is that because of the low
memory requirements of iterative solvers, we are able to solve problems with
over 2.5 million variables with only 8 processors. Strategies that rely on direct
solvers are likely to need significantly more storage, and thus more processors.

Section 6 examines the scalability of the GPCG component functions and the
performance of GPCG as the number of variables and the number of active vari-
ables at the solution change. These results illustrate the complex performance
behavior for constrained optimization problems as well as the observation that
performance results that focus only on efficiency can be deceiving if the total
computing time is not taken into account.

Section 7 considers the performance of GPCG as the preconditioners change.
The ability to use various preconditioners is a result of our design, which allows
the connection to external linear algebra toolkits. Our results in this section
show that for our benchmark problem, a block Jacobi preconditioner with one
block per processor, where each subproblem is solved with a standard, sparse
ILU(2) factorization, is faster than a variant with ILU(0). We also show that
both block Jacobi variants are faster than a simple point Jacobi method, al-
though the point Jacobi preconditioner exhibits better scalability.

2. BOUND-CONSTRAINED QUADRATIC OPTIMIZATION PROBLEM

We assume that the quadratic q : Rn 7→ R is strictly convex on the feasible
region

Ä = {x ∈ Rn : l ≤ x ≤ u}. (2)

This assumption guarantees that the bound-constrained quadratic optimiza-
tion problem (1) has a unique solution in Ä. Also note that since q is strictly
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convex, we can define

q(x) = 1
2
〈x, Ax〉 + 〈b, x〉 + c, (3)

where A ∈ Rn×n is symmetric and positive definite, b ∈ Rn, and c ∈ R.
We allow the feasible set (2) to be unbounded, and thus the components of

l or u can be infinite. We also allow variables to be fixed by setting li = ui. If
li < ui, then solutions to problem (1) satisfy the Kuhn–Tucker conditions

∂iq(x) = 0 if xi ∈ (li, ui)
∂iq(x) ≥ 0 if xi = li
∂iq(x) ≤ 0 if xi = ui,

where ∂iq(x) is the partial derivative of q with respect to the ith variable. Ap-
proximate solutions can be defined in terms of the projected gradient, defined
by

[∇Äq(x)]i =


∂iq(x) if xi ∈ (li, ui)
min{∂iq(x), 0} if xi = li

max{∂iq(x), 0} if xi = ui.

(4)

This definition of a projected gradient is appropriate because x∗ is a solution of
(1) if and only if ∇Äq(x∗) = 0.

Given x0 ∈ Ä, and a tolerance τ , an approximate solution to the bound con-
strained problem (1) is any vector x ∈ Ä such that

‖∇Äq(x)‖ ≤ τ. (5)

Note that (5) holds whenever x is sufficiently close to x∗ and in the face of Ä
that contains x∗. The concept of a face is standard in convex analysis; for the
convex set (2), the face of Ä that contains x is

{v ∈ Ä : vi = xi if xi ∈ {li, ui}}.
Thus, the face of the feasible set that contains x can be described in terms of
the set of active constraints

A(x) = {i : xi = li or xi = ui}.
Variables with indices in A(x) are the active variables, and those with indices
outside A(x) are the free variables. Similarly, the binding variables are those
with indices in

B(x) = {i : xi = li and ∂iq(x) ≥ 0, or xi = ui and ∂iq(x) ≤ 0}.
The Kuhn–Tucker conditions show that B(x) = A(x) at a solution, so that if all
the active variables are not binding, then x is not on the face that contains the
solution.

3. THE GPCG ALGORITHM

The GPCG algorithm uses a gradient projection method to identify a face of the
feasible regionÄ that contains the solution, and the conjugate gradient method
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to search the face. This section provides an outline of the algorithm and notes
any differences between our implementation and the implementation of Moré
and Toraldo [1991].

Given y0 = xk , the gradient projection method generates a sequence of vec-
tors { y j } in the feasible region Ä such that

y j+1 = P [ yj − αj∇q( yj )], (6)

where P is the projection onto (2), and the step size αj is chosen such that

q( yj+1) ≤ q( yj )+ µ〈∇q( yj ), P [ yj − α j∇q( yj )]− yj 〉 (7)

for some µ ∈ (0, 1/2). The projection P can be computed in n operations by

P [x] = mid(l , u, x),

where mid(l , u, x) is the vector whose ith component is the median of the set
{li, ui, xi}. The step size is computed by a projected search [Moré and Toraldo
1991] by setting α j to the first member of the sequence α0( 1

2 ) j for j = 0, 1, . . .
such that y j+1 satisfies the sufficient decrease condition (7). In our implemen-
tation, we use

α0 = arg min
{

q
(

yj − α∇Äq( yj )
)

: α > 0
}
. (8)

Computation of α0 is straightforward, since the mapping α 7→ q( yj −α∇Äq( yj ))
is a quadratic.

We generate gradient projection iterates until sufficient progress is not made
or the active set settles down. Thus, we generate iterates until either

A( yj ) = A( yj−1) (9)

or the condition

q( yj−1)− q( yj ) ≤ η1 max{q( yl−1)− q( yl ) : 1 ≤ l < j }, (10)

holds for some tolerance η1 in (0, 1). If either test is satisfied, we proceed to the
conjugate gradient part of the algorithm.

The first test (9) measures when the active set settles down. For nondegener-
ate problems, (9) holds in a neighborhood of the solution. The gradient projec-
tion could be followed until the optimal face is found, but experience has shown
that a large number of iterates may be required. The second test (10) measures
when the gradient projection method is not making sufficient progress.

Given an iterate xk and the active set A(xk), the conjugate gradient method
computes an approximate minimizer to the subproblem

min{q(xk + d ) : di = 0, i ∈ A(xk)}. (11)

This problem is unconstrained in the free variables. Note that if xk lies in the
same face as the solution and dk solves (11), then xk + dk is the solution of (1).

The conjugate gradient algorithm for solving (11) is implemented by express-
ing this subproblem in terms of an equivalent subproblem in the free variables.
Let i1, . . . , imk be the indices of the free variables, and let the matrix Zk be the
matrix in Rn×mk whose j th column is the i j th column of the identity matrix
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in Rn×n. With this notation, we see that subproblem (11) is equivalent to the
unconstrained subproblem

min{qk(w) : w ∈ Rmk }, (12)

where

qk(w) ≡ q(xk + Zkw)− q(xk) = 1
2
〈w, Akw〉 + 〈rk , w〉.

The matrix Ak and the vector rk are, respectively, the reduced Hessian matrix
of q and reduced gradient of q at xk with respect to the free variables. If A is
the Hessian matrix of the quadratic q, then

Ak = Z T
k AZk , rk = Z T

k ∇q(xk).

Also note that Ak is the matrix obtained from A by taking those rows
and columns whose indices correspond to free variables; similarly, rk is ob-
tained from ∇q(xk) by taking the components whose indices correspond to
free variables.

Given a starting point w0 ∈ Rmk , the conjugate gradient algorithm generates
a sequence of iterates w0, w1, . . . that terminates at a solution of subproblem
(12) in at most mk iterations. We use the conjugate gradient algorithm until it
generates wj such that

qk(wj−1)− qk(wj ) ≤ η2 max{qk(wl−1)− qk(wl ) : 1 ≤ l < j } (13)

for some tolerance η2 > 0. The approximate solution of (11) is then dk = Zkwjk ,
where jk is the first index j that satisfies (13).

The termination test (13) is not standard. Iterative solvers usually terminate
when

‖r j + Aj wj‖ ≤ η2‖r j‖
for some tolerance η2 ∈ (0, 1). This test suffers from the erratic behavior of the
residual ‖r j + Aj wj‖. On the other hand, the termination test (13) depends on
whether the conjugate gradient method is making sufficient progress.

Given the direction dk , we use a projected search [Moré and Toraldo 1991]
to define xk+1 = P [xk+αkdk], where αk is the first element in the sequence ( 1

2 )k

for k = 0, 1, . . . such that

q(xk+1) ≤ q(xk)+ µ〈∇q(xk), xk+1 − xk〉. (14)

More sophisticated projected searches are possible [Moré and Toraldo 1991],
but this simple search has proved to be sufficient in all cases tried. If

B(xk+1) = A(xk+1), (15)

then we find a more accurate solution to subproblem (12) by reducing η2
and continuing with the conjugate gradient method. Otherwise, we terminate
this iteration.

Our outline of algorithm GPCG does not include the termination test. An ad-
vantage of the termination test (5) is that this test is satisfied [Burke and Moré
1994] in a finite number of iterations. On nondegenerate problems, GPCG ter-
minates [Moré and Toraldo 1991] at the solution in a finite number of iterations.
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Algorithm GPCG is suitable for large problems. As opposed to some other
active set methods, each iteration is capable of adding or removing multiple
constraints from the active set. Moreover, as we shall see, GPCG tends to require
few iterations for convergence. Another advantage of the GPCG algorithm is
that convergence can be achieved while requiring only approximate solutions
to the linear systems.

Algorithm GPCG
Choose x0 ∈ Ä.
For k = 0, . . . ,

Set y0 = xk , and generate gradient projection iterates y1, . . . , y jk , where jk is the
first index to satisfy (9) or (10). Set xk = y jk .
Set w0 = 0, and generate conjugate gradient iterates w1, . . . , wjk for the reduced
system (11). Set dk = Zkwjk , where jk is the first index that satisfies (13).
Use a projected search to generate xk+1. If (15) holds, reduce η2, and continue with
the conjugate gradient method.

4. SOFTWARE DESIGN

The TAO design philosophy uses object-oriented techniques of data and state
encapsulation, abstract classes, and limited inheritance to create a flexible op-
timization toolkit. This section provides a short introduction to our design phi-
losophy by describing the objects needed to create GPCG and the importance
of this design.

At the algorithmic level, we use objects such as matrices, vectors, index sets,
and linear solvers. Our current implementation leverages the parallel comput-
ing and linear algebra infrastructure offered by PETSc [Balay et al. 1997, 2001],
which employs MPI [Gropp et al. 1994] for all interprocessor communication. In
this context, a vector (Vec) is an abstraction of an array of values that represent
a discrete field, and a matrix (Mat) represents a discrete linear operator that
maps between vector spaces. An index set (IS) is a generalization of a set of in-
teger indices, which can be used for selecting, gathering, and scattering subsets
of vector and matrix elements. TAO also interfaces to the preconditioned conju-
gate gradient method and other linear solvers within PETSc. Through the SLES
component of PETSc, users can define an iterative method, its preconditioner,
and the solution tolerance. Because each of these objects has several under-
lying representations, TAO has easy access to a variety of parallel vector and
sparse matrix implementations as well as preconditioners and Krylov subspace
methods.

With sufficiently flexible abstract interfaces, TAO can support a variety
of implementations of data structures and algorithms. These abstractions
allow us to more easily experiment with a range of algorithmic and data
structure options for realistic problems, such as within this case study. Such
capabilities are critical for making high-performance optimization software
adaptable to the continual evolution of parallel and distributed architectures
and the research community’s discovery of new algorithms that exploit their
features.
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Fig. 1. TAO interface for bound-constrained quadratic problems.

The interface to TAO uses only these objects, and a context variable called
TAO SOLVER, which encapsulates information about the solution process, includ-
ing the algorithm, convergence tolerances, options, and parameters. All of the
computations and communications related to a particular solution process are
managed in the solver context variable. This context must be created through
the TaoCreate routine, which specifies the optimization method (denoted by
TaoMethod) and the MPI communicator, which specifies the processes involved
in the optimization computations.

To define the problem, the routine TaoSetQuadraticFunction in Figure 1
sets the objective function (3) in terms of the Mat object A, Vec object B, and
scalar c and provides the Vec objects X and G that are used for the solution and
gradient. The function TaoSetVariableBounds defines upper and lower bounds
for the variables X with the Vec objects XL and XU. Users working in a parallel
environment must provide TAO with data structures A, B, X, G, XL, and XU that
are properly distributed over the processors. Appropriate distribution allows
efficient executions of the matrix-vector multiplication, vector inner product,
and vector saxpy operations. Numerical toolkits such as PETSc facilitate the
creation of these objects and provide the functionality for most of the required
numerical operations.

After defining the optimization problem, the user then calls TaoSolve to de-
termine the solution. Finally, the user destroys the TAO solver via TaoDestroy.
The code fragment in Figure 1 shows the main functions needed to solve bound-
constrained quadratic programming problems with TAO.

This interface serves several algorithms for bound-constrained quadratic
problems in addition to GPCG, including limited memory variable metric, trust
region Newton, and interior point techniques. Moreover, this single interface
serves other types of optimization problems as well. Additional routines may
be used to specify the starting point and various options for the optimization
solver, but the structure in Figure 1 is needed in all cases. Detailed information
can be found in the TAO User Guide [Benson et al. 2000].

TAO implements the GPCG algorithm as a sequence of well-defined opera-
tions. The operations required to implement the GPCG algorithm as outlined
in Section 3 include the vector and matrix operations listed in the preced-
ing paragraph, functions to compute the pointwise minimum and maximum
of two vectors, and a function that creates an index set that defines the indices
where the elements of two vectors are equal. The evaluation of the function
and gradient of the quadratic q, for instance, can be implemented through the
standard numerical operations of matrix-vector multiplication, vector inner
product, and vector saxpy. TAO passes Mat and Vec objects, whose represen-
tation is independent of our implementation of GPCG, to external tools that
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perform the numerical computations. Additional work vectors required by the
algorithm are created by calling a routine that clones the variable vector X
in Figure 1.

At each iteration of the GPCG algorithm, we also need to apply the conjugate
gradient method to the matrix Ak corresponding to the free variables. This is
an important phase of the computation because, as we shall see in Section 5, at
least 70% of the GPCG computing time is due to the conjugate gradient method.
We end this section by discussing the implementation of the conjugate gradient
method for solving the reduced problem in the free variables.

At least two techniques exist for applying the conjugate gradient method to
the reduced system of equations. One technique creates a second matrix Ak
that contains the rows and columns of A corresponding to the free variables,
and then applies the conjugate gradient method to the reduced system. An
alternative technique applies the conjugate gradient method to the rows and
columns of the full matrix A specified by the index set of the free variables. In
our implementation, we chose the first method. Despite the additional mem-
ory requirements and cost of copying data, this method is simpler, facilitates
the preconditioning and load-balancing of the reduced matrix, and was easily
implemented with the utilities provided by PETSc.

In a parallel environment, an efficient parallel implementation of the con-
jugate gradient method requires that the reduced matrix Ak be evenly dis-
tributed over the processors, but since the set of free variables may not be well
distributed over the processors, the reduced matrix may not well distributed—
regardless of how the matrix A is distributed. Since an unbalanced load can
result in tremendous losses in performance, a redistribution of the rows of Ak
over the processors may be necessary.

In the entire implementation of GPCG, no assumptions are made about the
representations of data in the vectors and matrices. This approach eliminates
some of the barriers in using independently developed software components
by accepting data that is independent of representation and interfacing to nu-
merical routines with the appropriate data formats. This design enabled us to
test the GPCG solver using several matrix formats and preconditioners without
modifying the solver.

5. PERFORMANCE

We have evaluated the performance of the GPCG implementation on a variety
of architectures. The data presented in this section was generated on the IBM
SP (each processor has 256 MB RAM, 128 KB cache for data, and a 32 KB
cache for instructions) at Argonne National Laboratory; performance trends
were similar on other machines.

As a benchmark application, we have used a journal bearing model, a varia-
tional problem over a two-dimensional region. This problem arises in the deter-
mination of the pressure distribution in a thin film of lubricant between two cir-
cular cylinders. The infinite-dimensional version of this problem is of the form

min{q(v) : v ≥ 0, v = 0 on ∂D},
ACM Transactions on Mathematical Software, Vol. 27, No. 3, September 2001.
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Fig. 2. The journal bearing problem with ε = 0.9.

where v : D 7→ R is piecewise continuously differentiable, q : H1 → R is the
quadratic

q(v) =
∫
D

{
1
2

wq(x)‖∇v(x)‖2 −wl (x)v(x)
}

dx,

D = (0, 2π )× (0, 2b) for some constant b > 0, and

wq(ξ1, ξ2) = (1+ ε cos ξ1)3, wl (ξ1, ξ2) = ε sin ξ1,

where ε in (0, 1) is the eccentricity parameter. The eccentricity parameter influ-
ences, in particular, the difficulty of the problem. Figure 2 shows the solution
of the journal bearing problem for ε = 0.9. The steep gradient in the solution
makes this problem a difficult benchmark.

Discretization of the journal bearing problem with either finite differences
or finite elements leads to a problem of the form (1) with l ≡ 0 and u ≡ +∞.
The number of variables is n = nxny , where nx and ny are, respectively, the
number of grid points in each coordinate direction of the domain D. See Moré
and Toraldo [1991] for a description of the finite element discretization.

We now analyze the performance of GPCG on large problems, that is, prob-
lems that will not fit into the memory of a single processor. Specifically, we used
a grid with 1600 points in each direction, leading to a problem with n = 2.56·106

variables.
The initial point x0 was set to the lower bound l . We used η1 = 0.1 in the test

(10) to terminate the gradient projection algorithm and η2 = 0.05 in the test
(13) to terminate the conjugate gradient algorithm. We stopped GPCG when
the convergence test (5) was satisfied with τ = 10−4.

Table I presents performance data for GPCG. We show the number of proces-
sors p, the number of GPCG iterates (iters), the number of conjugate gradient
iterations nGP , the wall clock solution time (in seconds), and the percentage of
time (tCG%) used by the conjugate gradient algorithm. The time in the conjugate
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Table I. Performance of GPCG on the Journal Bearing Problem with n = 2.56 · 106

ε p iters nG P time tCG% E8
0.1 8 46 431 7419 86 100
0.1 16 45 423 3706 83 100
0.1 32 45 427 2045 82 91
0.1 64 45 427 1279 82 73
0.9 8 37 105 2134 70 100
0.9 16 37 103 1124 71 95
0.9 32 38 100 618 69 86
0.9 64 38 99 397 68 67

gradient algorithm includes the time spent computing the preconditioner. Our
design allows the use of several preconditioners, but for the results in this sec-
tion we used a block Jacobi preconditioner with one block per processor, where
each subproblem was solved with ILU(2).

Table I also notes the efficiency of GPCG as the number of processors goes
from 8 to 64 processors. We only present the efficiency relative to p = 8, that is,

E8 = 8 T8

p Tp
,

where Tp is the computing time for p processors. This is appropriate since we
are interested in problems that require a large amount of memory, and in any
case, we could not solve problems with n = 2.56 · 106 variables on less than
eight processors.

The results in Table I are noteworthy is several ways. First, the number of
iterations of GPCG is remarkably small. This is surprising because the feasible
set (2) has 3n faces, and the GPCG visits only one face on each iteration. Other
strategies can lead to a large number of iterates, but the GPCG algorithm is
remarkably efficient.

Another interesting aspect of the results in Table I is that due to the low
memory requirements of iterative solvers, we were able to solve these problems
with only p = 8 processors. Strategies that rely on direct solvers are likely to
need significantly more storage, and thus more processors. Finally, these results
show that the GPCG implementation has excellent efficiency with respect to
p = 8 processors, ranging between 67% and 100%. This sustained efficiency
is remarkable because the GPCG algorithm is solving a sequence of linear
problems with a coefficient matrix set to the submatrix of the Hessian of q with
respect to the free variables for the current iterate. Thus, our implementation’s
repartitioning of submatrices deals effectively with the load-balancing problem
that is inherent in the GPCG algorithm.

For these results, we have noted that as ε increases, both tCG% and the
overall efficiency decrease. This observation follows from the empirical result
that the number of free constraints at the solution is inversely proportional
to the eccentricity parameter ε. In particular, roughly 68% of the constraints
are free at the solution when ε = 0.1, and 54% are free for ε = 0.9. Since the
size of the linear system that the conjugate gradient algorithm needs to solve
decreases as ε increases, the time required by the conjugate gradient algorithm
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Table II. Performance of GPCG on the Journal Bearing Problem with n = 640,000

ε p Iters nG P time tCG E8
0.1 8 27 232 639 78 100
0.1 16 26 231 365 75 88
0.1 32 27 230 220 74 73
0.1 64 27 228 152 75 53
0.9 8 20 52 199 64 100
0.9 16 21 54 128 64 78
0.9 32 20 52 74 61 67
0.9 64 23 54 58 62 43

decreases. Since the parallel efficiency of smaller problems is less than the
parallel efficiency of larger problems, the overall efficiency of GPCG decreases
as ε increases.

6. PERFORMANCE ANALYSIS

GPCG is typical of optimization algorithms that must deal with constrained
problems in the sense that these algorithms have dynamically changing active
sets. In this section, we analyze the performance of GPCG.

Table II presents performance results for the journal bearing problem with
dimension 640,000. In comparing these results with those of the larger problem
in Table I, note that while the number of variables increases by a factor of
four, the number of iterations and the number of gradient projection iterates,
increase by about a factor of two. This seems to be fairly typical of GPCG but may
not hold for other optimization algorithms. Some algorithms for unconstrained
problems exhibit mesh independence in the sense that the number of iterations
is independent of the number of variables, but this does not generally hold (see,
e.g., Dontchev et al. [2000]) for constrained problems.

When analyzing the parallel performance of an algorithm, we must bear
in mind that a problem can scale well only when the ratio of computation to
communication time is sufficiently large. Thus, for a particular problem size,
scalability tapers off when more processors are added than can be used effec-
tively. For GPCG, this effect can be seen clearly by comparing the results in
Table II with those in Table I.

An important aspect of the results in Table II is that for this particular
problem of dimension 640,000, the efficiency of GPCG drops rapidly with more
processors. To explain the drop in efficiency, we list in Table III the percentage of
time spent in the main operations of GPCG. Note that some of these operations
overlap, so the sum of the percentages always exceeds 100%. In this table Vec
Red refers to vector reductions, such as dot products and norms, while Vec Local
refers to vector operations such as y ← αx + y .

The percentage of time spent in the various functions of GPCG generally
decreases slightly as the number of processors increases, with the exception of
the vector reductions. Since vector reductions require communication among all
processors, they have a significant effect on the efficiency of the algorithm. Note
that the time for vector reductions remains fairly constant at about 8% of the
total computation time for 1–8 processors but that the efficiency of the algorithm
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Table III. Scalability of GPCG Functions (n = 640,000, ε = 0.1)

Percentage of time Total MFlops
Number Mat-Vec Vec Vec Linear Extract Linear TAO

Proc. Multiply Local Red Solve Submatrix Solve Solve
1 27 15 7 81 1 26 23
2 30 15 8 83 2 24 21
4 30 12 8 82 2 24 21
8 29 11 10 81 2 22 20

16 26 10 14 78 2 21 17
32 24 9 22 78 2 18 15
64 20 5 36 78 2 12 10

declines quickly as the percentage of time doing vector reductions increases to
36% on 64 processors. This analysis shows that the ratio of computation to
communication for this problem is too small for large number of processors and
is responsible for the loss in scalability of GPCG for p > 8.

In this discussion of efficiency, bear in mind that the Hessian matrix of the
journal bearing problem is relatively sparse with 5 nonzeros per row on average.
The efficiency is likely to improve if we deal with matrices with more nonzeros
per row, since then the amount of computation per conjugate gradient iteration
increases. These problems arise, for example, in three-dimensional simulations
or in variational problems with vector functions, that is, variational problems
that require determining a vector-valued function v : D 7→ Rm for m > 1 that
minimizes the quadratic q.

A surprising aspect of the results in Table III is that the percentage of time
required to extract the submatrix remains nearly constant at 2% of the total
computation time, demonstrating the relative efficiency of this phase of the
computation. These results are surprising because at first sight the need to
extract an arbitrary submatrix and to rebalance the distribution of rows across
the processors would destroy the efficiency of the algorithm. On the other hand,
the creation of a second matrix to hold the submatrix requires additional stor-
age. For large problems, the additional storage may exceed the memory capacity
of a small number of processors.

Another important component of our scalability analysis is the flop rate per
processor. As noted in Table III, the flop rate for the linear solve component of
GPCG is 26 MFlops for one processor and decreases to about 12.3 for 64 proces-
sors. For comparison purposes, the flop rate of a Newton algorithm in PETSc is
about 42 MFlops for one processor on a system of nonlinear equations with the
same sparsity as the journal bearing problem. This rate is higher than the rate
achieved by the GPCG algorithm, but this is to be expected because, as previ-
ously mentioned, the GPCG algorithm spends a significant amount of time on
tasks with no arithmetic operations. The extraction of the submatrix, creating
the reduced linear system and determining the free variables, typically require
more than 10% of the time. Hence, it is unlikely that the GPCG algorithm, or
any active set algorithm for constrained problems, can achieve a computation
rate as high as a Newton algorithm.

While these computations employed a standard compressed, sparse row for-
mat for matrix data, higher flop rates could be obtained on some problems
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Table IV. Performance of Preconditioners in GPCG (n = 640,000)

Diagonal Block Jacobi - ILU(0) Block Jacobi - ILU(2)
ε p iters time CG iters iters time CG iters iters time CG iters

0.1 4 26 2928 37045 27 1324 8679 26 1173 6312
0.1 16 26 851 37045 27 409 9105 26 364 6712
0.9 4 21 1216 18118 20 416 2654 20 368 1864
0.9 16 22 390 18118 23 150 3390 21 128 2303

by changing the matrix format. Alternative storage schemes that exploit the
structured sparsity of these problems would achieve higher flop rates for ma-
trix operations by alleviating unnecessary memory references. Likewise, block
sparse storage variants for problems with multiple unknowns per grid point
would achieve higher flop rates [Gropp et al. 1998]. Since our optimization
algorithms use a data-structure-neutral interface to matrix and vector opera-
tions, we can easily experiment with such alternatives without altering any of
the optimization code.

7. PRECONDITIONERS

The ability to experiment with various preconditioners is a direct result of our
design philosophy, which enables connection to the linear algebra infrastructure
provided in toolkits such as PETSc. In particular, we compared the diagonal
Jacobi preconditioner with a block Jacobi preconditioner that used one block
per processor. We employed sparse matrix based ILU as a subdomain solver for
the block Jacobi method, where we considered both ILU(0), which produced a
factored matrix that maintained the same sparsity pattern as the subdomain
matrix, and ILU(2), which allowed two levels of fill.

The statistics summarized in Table IV are the eccentricity parameter ε, the
number of processors p, the number of iterations of GPCG, the time required to
solve the problem (in seconds), and the number of conjugate gradient iterations.
We present results only for n= 640,000, since similar results were obtained for
n= 2,560,000.

The number of GPCG iterations in Table IV is independent of the number
of processors and of the preconditioner. In general, we expect small variations
in the number of iterations because different preconditioners create different
approximate solutions to linear systems and different paths to the solution.

In these experiments, we were interested in the impact of the preconditioner
on the total time to solution. The Jacobi method is scalable, so the main issue
is whether the higher computational cost of the block Jacobi is justified. As ex-
pected, the block Jacobi preconditioner with subdomain solver ILU(2) required
fewer conjugate gradient iterations than subdomain solver ILU(0), and both
block Jacobi preconditioners required fewer iterations than the point Jacobi
method. In addition, the block Jacobi methods also required less time. In gen-
eral, better preconditioners require more time to compute, and this additional
cost sometimes negates the savings achieved from fewer iterations of the linear
solver. In this problem, the block Jacobi preconditioners used about half of the
time required by the diagonal preconditioner, and the additional cost of com-
puting better preconditioners is justified. The most expensive preconditioner to
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compute of the three under consideration in this work, namely, the block Jacobi
method with subdomain solver ILU(2), produced the fewest iterations by the
conjugate gradient method and the smallest overall solution time.

The ability to experiment easily with a variety of preconditioners is an
advantage because we can then choose a technique that is most suitable
to the problem. In this spirit, we plan to experiment with the evolving
interfaces under development by the Equation Solver Interface (ESI) (see
http://z.ca.sandia.gov/esi) and Common Component Architecture (CCA)
[Armstrong et al. 1999] working groups, with a goal of enabling dynamic use
within TAO of any ESI-compliant preconditioning components.

8. CONCLUDING REMARKS

Our aim is to develop scalable optimization algorithms for important classes of
optimization problems. For variational problems like the journal-bearing prob-
lem described in Section 5, this means that the computing time grows slowly
with increasing n provided the ratio n/p of variables to processors stays con-
stant. This case study examined some of the issues that must be addressed in
order to achieve scalability; further progress will require making use of multi-
grid techniques and the relationship between grids.

An important ingredient in the development of scalable optimization algo-
rithms and software is a flexible interface that supports a wide variety of data
structures and algorithms. We have shown that the TAO design leverages ex-
ternal parallel computing infrastructure and linear algebra toolkits to solve
large-scale optimization problems on high-performance architectures. With the
exception of the work of Biros and Ghattas [1999a, 1999b], other codes for
large-scale optimization problems are either custom-written or restricted to
uni-processor environments.

TAO [Benson et al. 2000] extends to general nonlinearly bound-constrained
optimization, but the performance issues are more subtle due to the impact
of user-supplied function, gradient and Hessian code. Extensions of TAO to
large linearly constrained and nonlinearly constrained optimization problems
is currently an active research area.
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